Автоматическая коробка передач: устройство и принцип работы

 

Транспортных средств с автоматической коробкой переключения передач с каждым годом становится всё больше. И, если у нас – в России и СНГ – «механика» всё ещё продолжает преобладать перед «автоматом», то на Западе автомобилей с АКПП сейчас уже подавляющее большинство. Это неудивительно, если принять во внимание неоспоримые достоинства автоматических коробок: упрощение управления автомобилем, стабильно плавные переходы с одной передачи на другую, защита двигателя от перегрузок и т.п. неблагоприятных режимов работы, повышение комфорта водителя во время езды. Что касается недостатков этого варианта трансмиссии, то современные АКПП по мере совершенствования постепенно от них избавляются, делают их несущественными. В данной публикации – об устройстве коробки-«автомата» и всех её плюсах/минусах в работе.

Содержание

1. Об истории создания и совершенствования АКПП

2. Конструкция автоматической коробки передач

2.1 Гидротрансформатор

2.2 Планетарный механизм. Тормозная лента. Фрикционы

2.3 Система управления коробки-«автомата»: гидравлическая и электронная

3. Принцип работы АКПП/гидромеханической трансмиссии

4. Автоматическая коробка передач в работе

5. Преимущества и недостатки коробки-«автомата»

Автоматической коробкой передач называется такая разновидность трансмиссии, которая обеспечивает автоматический, без прямого воздействия водителя, выбор передаточного числа, более всего соответствующего актуальным условиям движения транспортного средства. Вариатор к АКПП не относится и выделяется в отдельный (бесступенчатый) класс трансмиссий. Потому как вариатор производит изменения передаточных чисел плавно, вообще без каких либо фиксированных ступеней-передач.




Об истории создания и совершенствования АКПП

Идея автоматизировать переключение передач, избавив водителя от необходимости часто выжимать педаль сцепления и «работать» рычагом переключения скоростей, не нова. Она начала внедряться и оттачиваться ещё на заре автомобильной эпохи: в начале ХХ века. Причём нельзя назвать какого-либо определённого человека или фирму единственным создателем автоматической коробки передач: к появлению классической, получившей сейчас всеобщее распространение гидромеханической АКПП привели три изначально независимые линии разработок, которые в итоге объединились в единой конструкции.

Один из основных механизмов коробки-автомата – это планетарный ряд. Первая серийная автомашина, оснащённая планетарной коробкой передач, была выпущена ещё в 1908 году, и это был «Форд Т». Хотя в целом та коробка переключения передач ещё не была полностью автоматической (от водителя «Форда Т» требовалось нажимать две ножных педали, первая из которых переводила с низшей на высшую передачу, а вторая включала задний ход), она уже позволяла значительно упростить управление, по сравнению с обычными КПП тех лет, без синхронизаторов.

Второй важный момент в становлении технологии будущих АКПП – это перевод управления сцеплением с водителя на сервопривод, воплощённый в 30-х годах ХХ века фирмой «Дженерал Моторс». Эти коробки переключения передач назывались полуавтоматическими. Первой полностью автоматической КПП стала внедрённая в производство в 30-х годах ХХ века планетарная электромеханическая коробка «Коталь». Она устанавливалась на французские автомобили забытых ныне марок «Деляж» и «Делайе» (существовали до 1953 и 1954 г. соответственно).

Об истории создания и совершенствования АКПП

Автомобиль «Деляж D8» – премиум-класс довоенной эпохи.

Другие автопромышленники в Европе также разрабатывали похожие системы фрикционов и тормозных лент. Вскоре подобные АКПП были реализованы в автомобилях ещё нескольких немецких и британских марок, известной и ныне здравствующей из которых является «Майбах».

Специалисты другой известной фирмы – американской «Крайслер» продвинулись далее других автопроизводителей, внедрив гидравлические элементы в конструкцию КПП, которые заменили сервоприводы и электромеханические элементы управления. Инженеры «Крайслера» разработали первые в истории гидротрансформатор и гидромуфту, которые имеются теперь в конструкции каждой автоматической коробки передач. А первая в истории гидромеханическая коробка-автомат, похожая по конструкции на современную, на серийных автомобилях была внедрена корпорацией «Дженерал Моторс».

Автоматические коробки передач тех лет были очень дорогими и технически сложными механизмами. К тому же, не всегда отличавшимися надёжной и долговечной работой. Они могли выигрышно выглядеть только в эпоху несинхронизированных механических коробок передач, управление автомобилем с которыми было достаточно тяжёлым трудом, требующим от водителя хорошо отработанного навыка. Когда широко распространились механические КПП с синхронизаторами, то по удобству и комфорту АКПП того уровня были ненамного лучше них. В то время как МКПП с синхронизаторами обладали гораздо меньшей сложностью и дороговизной.

В конце 1980/1990-х годах у всех крупных автопроизводителей происходила компьютеризация систем управления двигателем. Аналогичные им системы стали применять и для управления переключением скоростей. Если прежние решения использовали только гидравлику и механические клапаны, то теперь потоками жидкости стали управлять соленоиды, контролируемые компьютером. Это сделало переключения плавнее и комфортнее, улучшило экономичность и повысило эффективность работы трансмиссии.

Кроме того, на некоторых автомобилях были внедрены «спортивные» и другие дополнительные режимы работы, возможность вручную управлять коробкой передач («Tiptronic» и т.п. системы). Появились первые пяти- и более ступенчатые АКПП. Совершенствование расходных материалов позволило на многих коробках-автоматах отменить процедуру замены масла в процессе эксплуатации автомобиля, поскольку ресурс залитого в её картер на заводе масла стал сравнимым с ресурсом самой коробки передач.

Рекомендуем прочитать:  Техника CLAAS обеспечивает до 30% рентабельности при возделывании озимых пшеницы и рапса



Конструкция автоматической коробки передач

Современная коробка-автомат, или «гидромеханическая трансмиссия», состоит из:

  • гидротрансформатора крутящего момента (он же – «гидродинамический трансформатор, ГДТ»);
  • планетарного механизма автоматического переключения передач; тормозной ленты, заднего и переднего фрикционов – устройств, что напрямую переключают передачи;
  • устройства управления (узла, состоящего из насоса, клапанной коробки и маслосборника).

Гидротрансформатор

Гидротрансформатор нужен для передачи крутящего момента от силового агрегата к элементам автоматической трансмиссии. Располагается между коробкой и мотором, и, таким образом, выполняет функцию сцепления. Гидротрансформатор наполнен рабочей жидкостью, которая улавливает и передает энергию двигателя в масляный насос, находящейся непосредственно в коробке.

Состоит гидротрансформатор состоит из больших колёс с лопастями, погружёнными в специальное масло. Передача крутящего момента осуществляется не механическим устройством, а при помощи масляных потоков и их давления. Внутри  гидротрансформатора расположены пара лопастных машин – центростремительная турбина и центробежный насос, а между ними – реактор, который ответственен за плавные и стабильные изменения крутящего момента на приводах к колёсам транспортного средства. Итак, гидротрансформатор не контактирует ни с водителем, ни со сцеплением (он «сам и есть» сцепление).
Гидротрансформатор

Насосное колесо соединяется с коленвалом двигателя, а турбинное, — с трансмиссией. При вращении насосного колеса отбрасываемые им потоки масла раскручивают турбинное колесо. Чтобы крутящий момент можно было изменять в широких диапазонах, между насосным и турбинным колёсами предусмотрено реакторное колесо. Которое, в зависимости от режима движения автомобиля, может быть либо неподвижным, либо вращаться. Когда реактор неподвижен, он увеличивает скорость потока рабочей жидкости, циркулирующей между колёсами. Чем выше скорость движения масла, тем большее воздействие оно оказывает на турбинное колесо. Таким образом, момент на турбинном колесе увеличивается, т.е.  устройство его «трансформирует».

Но гидротрансформатор не может преобразовывать скорость вращения и передаваемый крутящий момент во всех требуемых пределах. Да и обеспечить движение задним ходом он тоже не в силу. Для расширения этих возможностей к нему и присоединяется набор из отдельных планетарных передач с разным передаточным коэффициентом. Как бы несколько одноступенчатых КПП, собранных в одном корпусе.

Планетарный механизм. Тормозная лента. Фрикционы

Планетарная передача представляет собой механическую систему, состоящую из нескольких шестерён-сателлитов, которые вращаются вокруг центральной шестерни. Сателлиты фиксируются вместе при помощи круга-водила. Внешняя кольцевая шестерня имеет внутреннее зацепление с планетарными шестернями. Сателлиты, закрепленные на водиле, вращаются вокруг центральной шестерни, как планеты вокруг Солнца (отсюда и название механизма – «планетарная передача»), внешняя шестерня вращается вокруг сателлитов. Различные передаточные отношения достигаются путем фиксации различных деталей относительно друг друга.

Планетарный механизм. Тормозная лента. Фрикционы

Тормозная лента, задний и передний фрикцион – напрямую производят переключения передач с одной на другую. Тормоз – это механизм, который производит блокировку элементов планетарного ряда на неподвижный корпус коробки-автомата. Фрикцион же блокирует подвижные элементы планетарного ряда между собой.

Система управления коробки-«автомата»: гидравлическая и электронная

Системы управления автоматических КПП бывают 2-х типов: гидравлическими и электронными. Гидравлические системы используются на устаревших или бюджетных моделях, и постепенно выводятся из употребления. А все современные коробки-«автоматы» управляются электроникой.

Устройством «жизнеобеспечения» для любой системы управления можно назвать масляный насос. Его привод осуществляется непосредственно от коленчатого вала двигателя. Масляный насос создаёт и поддерживает в гидравлической системе постоянное давление, независимо от частоты вращения коленчатого вала и нагрузок на двигатель. В случае отклонения давления от номинального функционирование АКПП нарушается  –ввиду того, что исполнительные механизмы включения передач управляются давлением.

Момент переключения передач определяется по скорости автомобиля и нагрузке на двигатель. Для этого в гидравлической системе управления предусмотрена пара датчиков: скоростной регулятор и клапан-дроссель, или модулятор. Скоростной регулятор давления или гидравлический датчик скорости устанавливается на выходном вале автоматической коробки.

Чем быстрее едет транспортное средство, тем больше открывается клапан, и тем больше становится давление проходящей через этот клапан трансмиссионной жидкости. Предназначенный для определения нагрузки на двигатель клапан-дроссель соединяется тросом либо с дроссельной заслонкой (если речь идёт о бензиновом двигателе), либо с рычагом топливного насоса высокого давления (в дизельном моторе).

Система управления коробки-«автомата»: гидравлическая и электронная

В некоторых автомобилях для подачи давления на клапан-дроссель используется не трос, а вакуумный модулятор, который приводится в действие разряжением во впускном коллекторе (при увеличении нагрузки на двигатель разряжение падает). Таким образом, эти клапаны создают такие давления, которые будут пропорциональными скорости движения автомобиля и загруженности его двигателя. Соотношение этих давлений и позволяет определять моменты переключения передач и блокировки гидротрансформатора.

В «ловле момента» переключения передачи принимает участие и клапан выбора диапазона, который соединен с селекторным рычагом АКПП и, в зависимости от его положения, разрешает либо запрещает включение определенных передач. Результирующее давление, которое создают клапан-дроссель и скоростной регулятор, вызывает срабатывание соответствующего клапана переключения. Причём, если машина ускоряется быстро, то система управления включит повышенную передачу позже, чем при разгоне спокойно-равномерном.

Рекомендуем прочитать:  Мотоблок «Крот»: Технические характеристики

Как это делается? Клапан переключения находится под давлением масла от скоростного регулятора давления с одной стороны, и от клапана-дросселя – с другой. Если машина ускоряется медленно, то давление от гидравлического клапана скорости идёт по нарастающей, что приводит к открытию клапана переключения. Поскольку педаль акселератора нажата не полностью, то клапан — дроссель не создает большого давления на клапан переключения. Если же машина разгоняется быстро, то клапан-дроссель создаёт бо́льшее давление на клапан переключения, и препятствует его открытию. Чтобы преодолеть это противодействие, давление от скоростного регулятора давления должно превзойти давление от клапана-дросселя. Но это произойдет при достижении автомобилем более высокой скорости, чем это происходит при медленном разгоне.

Каждый клапан переключения соответствует определенному уровню давления: чем быстрее движется автомобиль, тем более высшая передача включится. Блок клапанов представляет собой систему каналов с расположенными в них клапанами и плунжерами. Клапаны переключения подают гидравлическое давление на исполнительные механизмы: муфты фрикционов и тормозные ленты, посредством которых осуществляется блокировка различных элементов планетарного ряда и, следовательно, включение (выключение) различных передач.

Электронная система управления так же, как и гидравлическая, использует для работы 2 основных параметра. Это скорость движения автомобиля и нагрузку на его двигатель. Но для определения этих параметров используются уже не механические, а электронные датчики. Основными из них являются рабочие датчики: частоты вращения на входе коробки передач; частоты вращения на выходе коробки передач; температуры рабочей жидкости; положения рычага селектора; положения педали акселератора. Кроме того, блок управления коробки-«автомата» получает дополнительную информацию от блока управления двигателем, и от других электронных систем автомобиля (в частности, от ABS – антиблокировочной системы).

Это позволяет точнее, чем в обычной АКПП, определять моменты необходимости в переключениях или в блокировке гидротрансформатора. Электронная программа переключения передач по характеру изменения скорости при данной нагрузке на двигатель может легко и мгновенно вычислить силу сопротивления движению автомобиля и при необходимости подстроиться: ввести соответствующие поправки в алгоритм переключения. Например, попозже включать повышенные передачи на полностью загруженном транспортном средстве.

В остальном, АКПП с электронным управлением так же, как и обычные, «не отягощённые электроникой» гидромеханические коробки, используют гидравлику для включения муфт и тормозных лент. Однако у них каждый гидравлический контур управляется электромагнитным, а не гидравлическим клапаном.

Принцип работы АКПП/гидромеханической трансмиссии

Перед началом движения насосное колесо вращается, реакторное и турбинное остаются в неподвижном состоянии. Реакторное колесо закреплено на вале посредством обгонной муфты, в связи с чем может вращаться только в одну сторону. Когда водитель включает передачу, нажимает на педаль газа – обороты двигателя растут, насосное колесо набирает обороты и потоками масла раскручивает колесо турбинное.

Масло, отбрасываемое обратно турбинным колесом, попадает на неподвижные лопатки реактора, которые дополнительно «подкручивают» поток этой жидкости, увеличивая его кинетическую энергию, и направляют на лопасти насосного колеса. Таким образом, при помощи реактора возрастает крутящий момент, что и требуется транспортному средству, набирающему разгон. Когда автомобиль разогнался, и начал двигаться с постоянной скоростью, то насосное и турбинное колёса вращаются примерно с одинаковыми оборотами. Причём поток масла от турбинного колеса попадает на лопасти реактора уже с другой стороны, благодаря чему реактор начинает вращаться. Возрастания крутящего момента не происходит, и гидротрансформатор переходит в равномерный режим гидромуфты. Если же сопротивление движению автомобиля начало возрастать (к примеру, автомобиль начал ехать на подъём, в гору), то скорость вращения ведущих колёс, а, соответственно, и турбинного колеса, падает. В этом случае потоки масла снова затормаживают реактор – и крутящий момент возрастает. Таким образом, производится автоматическое регулирование крутящего момента, в зависимости от изменений в режиме движения транспортного средства.

Отсутствие жёсткой связи в гидротрансформаторе имеет как достоинства, так и недостатки. Плюсы состоят в том, что крутящий момент изменяется плавно и бесступенчато, демпфируются крутильные колебания и рывки, передаваемые от двигателя к трансмиссии. Минусы состоят, прежде всего, в невысоком КПД,  поскольку часть полезной энергии попросту теряется при «перелопачивании» масляной жидкости и расходуется на привод насоса АКПП, что, в конечном итоге, приводит к увеличению расхода топлива.

Принцип работы АКПП/гидромеханической трансмиссии

Но для сглаживания данного недостатка в гидротрансформаторах современных АКПП применяется режим блокировки. При установившемся режиме движения на высших передачах автоматически включается механическая блокировка колёс гидротрансформатора, то есть он начинает выполнять функцию обычного классического механизма сцепления. При этом обеспечивается жёсткая непосредственная связь двигателя с ведущими колёсами, как в механической трансмиссии. На некоторых АКПП включение режима блокировки предусмотрено и на низших передачах тоже. Движение с блокировкой является наиболее экономичным режимом работы коробки-«автомата». А при повышении нагрузки на ведущих колесах блокировка автоматически выключается.

Рекомендуем прочитать:  Пресс-подборщик ПР-200: технические характеристики

При работе гидротрансформатора происходит значительный нагрев рабочей жидкости, вот почему в конструкции автоматических коробок предусматривается система охлаждения с радиатором, который либо встраивается в радиатор двигателя, либо устанавливается отдельно.




Автоматическая коробка передач в работе

Любая современная коробка-«автомат» имеет на рычге-селекторе кабины следующие обязательные положения:

  • Р – паркинг, или парковочная блокировка: блокировка ведущих колёс (не взаимодействует со стояночным тормозом). Аналогично, как на «механике» машину оставляют «на скорости» при постановке на стоянку;
  • R – реверс, передача заднего хода (её всегда запрещено было активировать в момент движения автомобиля, а потом в конструкции предусмотрели соответствующую блокировку);
  • N – нейтралка, режим нейтральной передачи (активируется при непродолжительной стоянке или при буксировке);
  • D – драйв, движение передним ходом ( при этом режиме будет задействован весь передаточный ряд коробки, иногда – отсекаются две высшие передачи).

Автоматическая коробка передач в работеА также может иметь некоторые дополнительные, вспомогательные или расширенные режимы. В частности:

  • L – «понижайка», активация режима пониженной передачи (малый ход) с целью передвижения в сложных дорожных либо во внедорожных условиях;
  • O/D – овердрайв. Режим экономии и размеренного перемещения (при любой возможности коробка-«автомат» переключается наверх);
  • D3 (O/D OFF) — дезактивация высшей ступени для активной езды. Задействуется торможением силовым агрегатом;
  • S – передачи раскручиваются до максимальных оборотов. Может присутствовать возможность ручного управления коробкой.
  • На АКПП может присутствовать и специальная кнопка, которая запрещает переход на более высокую передачу при обгоне.

Преимущества и недостатки коробки-«автомата»

Как уже отмечалось, весомыми преимуществами автоматических коробок передач, по сравнению с механическими, являются: простота и комфорт управления транспортным средством для водителя: сцепление выжимать не нужно, «работать» рычагом переключения передач – тоже. Особенно это актуально в поездках по городу, которые и составляют, в конечном итоге, львиную долю пробега автомобиля.

Переключения передач на «автомате» получаются более плавными и равномерными, что способствует защите двигателя и ведущих узлов автомобиля от перегрузок. Расходные части (к примеру, диск сцепления или тросик) отсутствуют, потому и вывести из строя АКПП, в этом смысле, сложнее. В целом, ресурс многих современных АКПП превышает ресурс механических коробок передач.

К недостаткам автоматических коробок передач относят более дорогую и сложную, чем у МКПП, конструкцию; сложность ремонта и его высокую стоимость, более низкий КПД, худшую динамику и повышенный, по сравнению с МКПП, расход топлива. Хотя, усовершенствованная электроника коробок-«автоматов» ХХI века справляется с правильным выбором крутящего момента уже не хуже опытного водителя. Современные автоматические коробки передач зачастую оборудованы дополнительными режимами, позволяющими подстраиваться под определённый стиль вождения –от спокойного до «резвого».

Преимущества и недостатки коробки-«автомата»

Серьезным недостатком автоматических коробок переключения передач называют невозможность максимально точного и безопасного переключения передач в экстремальных условиях – к примеру, на сложном обгоне; на выезде из сугроба или серьёзной грязи быстрым переключением задней и первой передачи («в раскачку»), при необходимости запуска двигателя «с толкача». Нужно признать, что АКПП идеально подходят, главным образом, для обычных поездок без внештатных ситуаций. В первую очередь – по городским дорогам. Не очень приспособлены коробки-«автоматы» и для «спортивного вождения» (динамика разгона немного отстаёт от «механики» в связке с «продвинутым» водителем», и для ралли по боздорожью (не всегда может идеально приспособиться к изменению условий движения).

Что касается расхода топлива, то у автоматической коробки он в любом случае будет бо́льшим, чем у механической. Однако если раньше этот показатель составлял 10-15%, то в современных автомобилях он снизился до малосущественных отметок.

В целом, применение электроники существенно расширило возможности автоматических коробок переключения передач. Они получили различные дополнительные режимы работы: такие, как – экономичный, спортивный, зимний.

Резкий рост распространённости коробок-«автоматов» был вызван появлением режима «Autostick», который позволяет водителю, при желании, самостоятельно выбирать нужную передачу. Каждый производитель дал такому типу автоматической коробки передач свое название: «Audi» –«Tiptronic», «BMW» – «Steptronic», и т.п.

Благодаря продвинутой электронике в современных АКПП стала доступной и возможность их «самосовершенствования». То есть, изменения алгоритма переключений в зависимости от конкретного стиля вождения «хозяина». Электроника предоставила расширенные возможности также и для самодиагностики АКПП. И речь идёт не только о запоминании кодов неисправностей. Программа управления, контролируя износ фрикционных дисков, температуру масла, оперативно вносит необходимые коррективы в работу автоматической коробки передач.

 

 

Материал взят с сайта Трактор-Ревю (https://tractorreview.ru) — обязательно посмотрите информацию у первоисточника

 

  • Автор записи:
  • Рубрика записи:Tractorreview.ru